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Abstract--Melting of a pure phase change material (PCM) in a rectangular container heated from below 
is simulated using the Streamline Upwind/Petrov Galerkin finite element method in combination with a 
fixed grid primitive variable method. Boussinesq assumption is invoked and two-dimensionality is assumed. 
Flow patterns for a wide range of Rayleigh numbers are presented. Instability of free convection flow 
during the melting process is discovered and discussed. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Although many experimental and numerical studies 
have been dedicated to convection-dominated melting 
of phase change materials (PCMs) for various 
geometry configurations, e.g., along a vertical wall, 
inside as well as: around a horizontal cylinder, etc., 
little effort has been reported on the melting of a PCM 
heated from below. 

Yen and Galea [l, 21 and Seki et al. [3] exper- 
imentally studied the melting of a horizontal ice slab 
heated from below. Hale and Viskanta [4] performed 
experiments for melting from below and solidification 
from top of n-octadecane in a rectangular cavity. They 
did not present flow patterns and phase change inter- 
face shapes, however, Gau et al. [5] presented flow 
visualization for melting from below of a n-octadecane 
slab in a rectangular cavity. Diaz and Viskanta [6] 
extended the experiments of Gau et al. [5] to mor- 
phology observation of the liquid/solid interface. 

In this paper the melting of a pure PCM in a rec- 
tangular container heated from below is simulated 
with the Streamline Upwind/Petrov Galerkin finite 
element in combination with a fixed grid primitive 
variable method. The Boussinesq assumption is 
invoked and two-dimensionality is assumed. Different 
flow patterns are obtained for different Rayleigh num- 
bers. Instability of free convection flow is discovered. 
Sample results are presented and discussed. 

2. MATHEMATICAL FORMULATION 

For the mathematical description of a melting or 
freezing process the following assumptions are made : 
(1) heat transfer in the PCM is conduction/convection 
controlled, and the melt is Newtonian and incom- 
pressible ; (2) the flow in the melt is laminar and vis- 

t Author to whlom correspondence should be addressed. 

cous dissipation is negligible ; (3) the densities of the 
solid and liquid are equal ; (4) the Boussinesq assump- 
tion is valid for free convection, i.e. density variations 
are considered only insofar as they contribute to buoy- 
ancy, but are otherwise neglected ; (5) the solid PCM is 
fixed to the container wall during the melting process. 

Based on the above assumptions and following the 
enthalpy-porosity model [7, 81, the governing equa- 
tions in tensor form are 

ui,; = 0 (1) 

p ($ +UjUi,j) 

In equation (2) 

A = -C(1-1)*/(a3+b) (4) 

in which b is a small constant introduced to avoid 
division by zero and C is a constant accounting for 
the morphology of the mushy region. In general b is 
assigned a value of 0.001. For isothermal phase change 
(pure PCM) C is assigned a value of 1.6 x 106. 

The initial and boundary conditions are 

initial conditions 

T(x, 0) = To(x) 

Ui(X, 0) = up(x) (5) 

boundary conditions 

ui = &(s, t) on I, 

T = T(s, t) on IT 

4 = -W&(s) = q&r, t)+&)+q,(r) on 14. (6) 
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NOMENCLATURE 

porosity function for the momentum 
equation 
dimensionless form of A 
a small constant 
specific heat 
constant 
Fourier number 
gravitational force vector 
enthalpy 
dimensionless enthalpy 
heat conductivity 
effective melt height 
length of rectnagular enclosure in 
x direction 
length of rectangular enclosure in 
Y direction 
surface unit normal vector 
fluid pressure 
dimensionless fluid pressure 
Prandtl number 
heat flux 
prescribed heat flux 
convective heat flux 
radiative heat flux 
Rayleigh number 
boundary surface coordinate 
Stefan number 
time 
temperature 
reference temperature 
melting point of PCM 
isothermal wall temperature 

4 velocity in x direction 
% velocity in Y direction 
ui velocity component 
u dimensionless velocity of x direction 
V dimensionless velocity of Y direction 
& Y coordinate 
X, Y dimensionless coordinate. 

Greek symbols 

; 
diffusivity 
expansion coefficient 

Y penalty parameter 
I- boundary 
Ah latent heat 
At time step 
0 dimensionless temperature 
L porosity of a mush zone 
p viscosity 
P density 
0 the angle of horizontal direction to 

x axis. 

Subscripts 
1 liquid 
S solid 
X component of x direction 
Y component of y. 

Superscript 
- overbar, boundary value of the 

variable 
0 initial value. 

In this study the penalty formulation [9, lo] is 
employed to treat the incompressibility constraint. 
According to the penalty formulation, the continuity 
equation is replaced by 

1 
ui,i = - -p 

Y 

where y is the penalty parameter which is generally 
assigned a value of 1 .O x 1 09. 

Substitution of equation (7) into equation (2) yields 

P @ +"ju,j) 

= j (U~,i>,;b(Ui,j+ uj,i>l,j-PgiB(T- To) +Aui. (8) 

The mass conservation equation is eliminated from 
the system of equations to be solved because of the 
utilization of the penalty formulation. 

Once the velocity and temperature fields are known, 
the pressure filed is calculated aposteriori if desired at 
any step by solving the Poisson equation [l l] 

-@j), = P(Uj~~,~),~+PB(g,T~) (9) 

subject to homogeneous Neumann conditions along 
the boundary P, i.e. 

njpj = 0. (10) 

In order to obtain a unique pressure field it is necessary 
to set the pressure at one point in the domain equal 
to a reference pressure. 

The Streamline Upwind/Petrov Galerkin finite 
element method [l&12] is utilized to solve the govern- 
ing equations. A source-based method [13, 141 is 
employed to treat the latent heat effect. For detailed 
information of the numerical model please see Gong 
and Mujumdar [ 151. 
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3. DIMENSIONLESS FORM OF THE GOVERNING 

EQUATIONS 

Non-dimensionalization of the governing equations 
(l)-(3) yield the dimensionless governing equa- 
tions for two-dimensional problems subjected to the 
Dirichlet boundary condition as follows : 

Solid region : 

Liquid region : 

+RaPrsino+A*U (13) 

+RaPrcosw+A*V (14) 

in which 

I H=C”SteO, 0x0 
Cl 

H=SteB+l 8>0 
(16) 

and 

h-c,T, 
H=T, p=pL: x=2 

PG 4’ 
Y= f, 

Y 

A*=!!.$, Fo=fcI’, Pr=!ff 
L: I 

Ra = p2c,gBL:(Tw- Tm) O-‘w- Tm) 
A 

, Ste = ah . 

(17) 

It is obvious that a melting or solidification process 
is governed by the following five dimensionless par- 
ameters, Rayleigh number (Ra), Prandtl number (Pr), 
Stefan number (Ste), the ratios of solid/liquid specific 
heat (c,/c,) and heat conductivity (k,/k,). 

It should be noted that for melting from below the 
Rayleigh number (Ra) in eqn (17) defined based on 
the container height, L,,, is not the true Rayleigh 
number. The true Rayleigh number should be calcu- 
lated using the actual melt height (L,) instead of the 
height of the cavity (L,). Since the melt height (LJ is 

time-dependent, the true Rayleigh number also varies 
with time during the melting process. 

4. TEST OF THE NUMERICAL MODEL 

The above mentioned numerical model is compared 
with the experimental results of Gau and Viskanta 
[ 161 and the implicit finite difference results of Lacroix 
[ 171 for the melting of a pure metal (gallium) inside a 
two-dimensional rectangular cavity (height 
L, = 0.0445 m; width L, = 0.089 m). The gallium is 
assumed to be initially at its fusion temperature. The 
top and bottom boundaries are adiabatic. At time 
t = 0, the temperature of the left vertical wall is sud- 
denly raised to a prescribed temperature above the 
melting point. The values of the governing dimen- 
sionless numbers and aspect ratio used in the numeri- 
cal experiments are listed in Table 1. 

Figure 1 compares the predicted phase front with 
both the experimental results of Gau and Viskanta 
[ 161 and the finite difference predictions of Lacroix 
[ 171. It is seen from this figure that the present model 
is in good agreement with the results of the above- 
mentioned references. 

The discrepancy between the predicted phase front 
of the present model and the experimental results is 
due to two possible reasons. First, in the experiment, 
the solid showed an initial subcooling of approxi- 
mately 2°C. This degree of subcooling is significant in 
light of the fact that the heated wall was only 8°C 
higher than the melting temperature of gallium. The 
second reason is that it is difficult to impulsively heat 
the vertical wall to a desired temperature because of 
its finite thermal inertia. The discrepancy of predicted 
phase front between the present model and Lacroix’s 

Table 1. Parameters used in the test runs for accuracy 

R Aspect ratio L,/Lx 0.5 
Ra Rayleigh number 2.2 x 10s 
Pr Prandtl number 0.021 
Ste Stefan number 0.042 
c,/c, Ratio of solid/liquid specific heat 1 
k,/k, Ratio of solid/liquid heat conductivity 1 

1. Comparison of the predicted phase front with exper- 
imental data. 
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model is probably due to the differences in the numeri- 
cal methods used. Lacroix used a front tracking 
method while this model uses a fixed-grid enthalpy- 
porosity approach to model the phase change effects. 

5. RESULTS AND DISCUSSION 

Using the above-described numerical model simu- 
lation runs were carried out for melting of a PCM in 
a rectangular cavity heated from below. The top and 
the two vertical walls are assumed to be adiabatic (see 
Fig. 2). The parameters for the computed problem are 
listed in Table 2. The phase change material used is n- 
octadecane (99% pure). 

Grid-dependence experiments indicated that the 
maximum difference of the temperature at an identical 
location is within 0.16% between using 20 x 20 
elements with a dimensionless time step of 4.32 x 10-j 
and 30 x 30 elements with the same time step ; while 
the difference is only 0.07% between using 30 x 30 
elements with a dimensionless time step of 4.32 x 1O-5 
and 40 x 40 elements with a time step of 2.16 x 10e5. 
Therefore, 30 x 30 elements with a time step of 
4.32 x 10e5 were used for this and all the subsequent 
computations considering both accuracy and com- 
puting time. 

It is known from experiments that three-dimen- 
sional convection cells develop and last for a short 
period of time during the early stage in two-dimen- 
sional melting of a PCM heated from below [5]. In 
this study we neglect three-dimensional convection 

adiabatic 

Isothermal Surface 
Fig. 2. Schematic of the computed problem. 

Table 2. Parameters used in the simulation runs 

R Aspect ratio L,/L, 1.0 
Ra Rayleigh number 2.844 x lo6 
Pr Prandtl number 46.1 
Ste Stefan number 0.138 
c.ls Ratio of solid/liquid specific heat 0.964 
k,/k, Ratio of solid/liquid heat conductivity 2.419 
ei Initial dimensionless temperature -0.0256 

(al) Fo=I.O8 @l)Fo-1.08 

(a2) Fo=I.296 

(a3) Fo=1.62 

@2) Fo=1.296 

@3) Fo=I.62 

Fig. 3. Streamlines and isotherms in the melt zone for heating 
from below (Ra = 2.844 x 104). 

since we employ a two-dimensional model. However, 
the duration of the three-dimensional convection is 
very short [l, 51 compared with the whole melting 
process so that the two-dimensional results may be 
close to reality. No experimental data are available 
for direct validation at this time. 

Figure 3 shows the computed streamlines and iso- 
therms at different Fo values for Ra = 2.844 x 104. 
From these figures it is seen that free convection does 
not develop until over half of the PCM is melted. Why 
does convection develop so late? As mentioned earlier, 
the actual Rayleigh number for melting from below is 
varying (increasing) with the melting process. The 
earlier the melting process, the smaller the melt height, 
the smaller the true current Rayleigh number. Under 
a small Rayleigh number free convection effects are 
small. 

For Ra = 2.844 x lo4 two convection cells develop 
during the melting process. These two convection cells 
are symmetric. The number of convection cells is time- 
independent. Due to the convection circulation flow, 
the phase change interface is not flat. Since the flow 
direction of the left convection cell is anti-clockwise 
and that of the right cell is clockwise, the melt is heated 
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- Fo=1.06 
---Fo=1.296 
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X 
Fig. 4. Local dimensionless heat flux distribution along the 

heated surface at ‘different Fo values (Ra = 2.844 x 10’). 

to the highest temperature at bottom center and then 
floats up, reaches the phase change interface and splits 
into opposite directions. The melt is cooled as it flows 
through the phase change interface. This explains why 
the phase change interface has a peak at the center. 

Figure 4 displays the local dimensionless heat flux 
distribution curves corresponding to the flow patterns 
in Fig. 3. According to the dimensionless energy equa- 
tion [equation (I 5)] the dimensionless heat flux in 
liquid phase is &‘/ax. From this figure one can see 
that there is a trough at the center of the heat flux 
curve. This trough corresponds to the junction of the 
two convection cells in Fig. 3. It is well known the 
lower the temperature difference the lower the heat 
flux. Since the melt temperature is the highest at the 
bottom center (see the isotherms in Fig. 3) and the 
bottom wall is isothermal, the temperature difference 
is the lowest at the bottom center. As a result, the heat 
flux is the lowest there. 

Figure 5 presents the predicted streamlines and iso- 
therms at different Fo values for Ra = 2.844 x 10’. 
Unlike the case of Ra = 2.844 x 104, free convection 
develops much earlier in the case of Ra = 2.844 x 105. 
Also four symmetric convection cells persist during 
the whole melting process at this Rayleigh number. 
As in the case of .Ra = 2.844 x lo4 the number of con- 
vection cells is also time-independent. Due to the 
effects of the four convection cells two symmetric 
cusps on the liquid/solid phase change interface form. 
The left cusp corresponds to the junction of the left 
two convection cells. This cusp forms because the flow 
direction of the leftmost convection cell is clockwise 
and that of its neighbour is anti-clockwise. Due to this 
fact the melt temperature at the junction of the two 
cells on the phase change interface is the lowest [see the 
corresponding isotherms in (bl)-(b4)]. This explains 
why the phase chlange interface at this location is the 
lowest. 

Figure 6 shows the local dimensionless heat flux 
distribution curves at different Fo values cor- 
responding to the streamline patterns shown in Fig. 
5. From this figure it is seen that there are two crests 
and one trough at the center on the heat flux dis- 
tribution curves. The left crest corresponds to the 
junction of the two leftmost convection cells and the 

(al) Fo=O.302 @l)Fo=O.302 

@2)Fo=O.454 

II 

(a3)Fo=O.605 @3)Fo=O.605 

@4)Fo=o.756 (Ld)Fo=O.756 

Fig. 5. Streamlines and isotherms in the melt zone for heating 
from below (Ra = 2.844 x 10’). 
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6 
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3 --- Fo=O.454 --- Fo=O.756 

“0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 
Fig. 6. Local dimensionless heat flux distribution along the 

heated surface at different Fo values (Ra = 2.844 x 10’). 
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trough corresponds to the junction of the second and 
third convection cells from the left. Due to the sym- 
metry of the convection cells the heat flux distribution 
is also symmetric. 

Figure 7 shows the predicted streamlines and iso- 
therms at different Fo values for Ra = 2.844 x 106. 

(al) Fo=o.O864 (bl) Fo=O.O864 

(aZ)Fo=O.173 @Z)Fo=O.I73 

(a3)Fo=o.259 @3)Fo=O.259 

(a4)Fo=o.346 @4)Fo=O.346 

(aS)Fo=O.432 @S)Fo=@432 @)Fo=O.O864,0.346,0.432 

Fig. 7. Streamlines and isotherms in the melt zone for heating Fig. 8. Local dimensionless heat flux distribution along the 
from below (Ra = 2.844x 106). heated surface at different Fo values (Ra = 2.844 x 106). 

From these streamline patterns it is seen that at 
Fo = 0.0864 a total of eight convection cells develop 
and result in a regular distribution of cusps on the 
liquid/solid phase change interface. The predicted 
phenomena are consistent with the published exper- 
imental results of ref. [6]. With the increase of the melt 
depth the size of the convection cells increases and the 
number of cells decreases. At Fo = 0.173 two major 
large circulation cells exist. With further increase of 
the melt depth the size of the left cell increases and that 
of the right cell decreases. Because of the asymmetric 
distribution of the convection cells the phase change 
interface is also asymmetric although the container 
geometry and boundary condition are symmetric. Pre- 
dictions of the asymmetric flow patterns and phase 
change interface are in accord with the experimental 
results of ref. [6]. 

Corresponding to the flow patterns in Fig. 7, Figs. 
8a and 8b present the local dimensionless heat flux 
distributions. Figure 8a shows that the dimensionless 
heat flux distribution at Fo = 0.0864 is wave-like cor- 
responding to the multiple convection cells of Fig. 
7-al. There are four crests and three troughs on the 
dimensionless heat flux curve of Fo = 0.0864 dis- 
played in Fig. 8a. These crests and troughs correspond 
to the seven junctions of the eight convection cells in 
the streamlines shown in Fig. 7-a 1. The first crest from 
left corresponds to the junction of the first and second 
convection cells. The flow direction of the first circu- 
lation is clockwise and the second circulation is anti- 
clockwise. The liquid layers from the two circulation 

I ~ Fo=O.o864--- Fo=O.173 .. Fo=O.259 1 

0 F’~,,‘,,,“,,‘,“““,,‘,“‘,““‘,“,‘,”,,”,”,’ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 

(a) Fo=O.O864, 0.173, 0.259 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 

X 
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cells are cooled after passing the phase change inter- 
face and then reach the junction of the two circulation 
zones at the bottom. This causes a low temperature 
zone to develop near the junction at the bottom sur- 
face of the container. The low temperature zone is 
seen in the isotherms in Fig. 7-bl. Since the bottom 
surface of the container is isothermal, a low tem- 
perature near the bottom isothermal surface means a 
large temperature difference for heat transfer. This 
results in higher heat flux. 

The first trough from left corresponds to the junc- 
tion of the second and the third convection cells in 
Fig. 7-al. Since the flow direction of the second circu- 
lation is anti-clockwise and the third circulation is 
clockwise, at the: junction of the two cells a high tem- 
perature zone is developed. This is shown in the cor- 
responding isotherms in Fig. 7-bl . A higher tempera- 
ture near the bottom isothermal surface results in a 
lower temperature difference for heat transfer from 
the wall. The lower temperature difference results in a 
reduced heat flux. Similar explanation applies to the 
other crests and troughs in the dimensionless heat flux 
distributions. 

The heat flux distribution curve at Fo = 0.0173 in 
Fig. 8a shows that the heat flux close to the left vertical 
wall is very low (although the flow direction of the first 
large convection cell from left is anti-clockwise in Fig. 
7-a2. This is caused by the small circulation bubble in 
the bottom-left corner. This bubble results in a high 
temperature zone. The high temperature zone leads 
to a reduced heat flux along the bottom isothermal 
surface. Similarly, the trough on the heat flux curve 
corresponds to the junction of the two large con- 
vection cells seen in Fig. 7-a2. 

Figure 9 shows the predicted streamlines and iso- 
therms at diffe:rent Fo values for Ra = 2.844 x 107. 
From these figures it is observed that the flow patterns 
at this Rayleigh number are quite irregular. The flow is 
not symmetric and is varying with time in the melting 
process. Because of the asymmetry of the flow pattern 
the phase change interface is also asymmetric. 

Corresponding to the streamlines in Fig. 9, Fig. 10 
displays the local dimensionless heat flux distri- 
butions. Due to the irregularity of the flow patterns 
the heat flux distribution is also quite irregular and 
complex. 

A comparison of the streamline pictures at different 
Rayleigh numbers shows that the flow patterns are 
completely different at different Rayleigh numbers. At 
high Rayleigh numbers the flow patterns are always 
varying with the melting process. At low Rayleigh 
numbers the flow patterns and phase change interfaces 
are symmetric due to the symmetry of the boundary 
condition. However, the flow patterns are asymmetric 
at high Rayleigh numbers although the boundary con- 
dition is symmetric. Due to the asymmetry of the flow 
patterns the phase change interface is also asymmetric. 
This phenomena was observed in the experiment of 
ref. [6]. 
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(a2)Fo=O.I30 
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@Z)Fo=O.230 

(a3)Fo-0.194 @3)Fo=O.194 

(a4)Fo=O.259 @4)Fo=O.259 

Fig. 9. Streamlines and isotherms in the melt zone for heating 
from below (Ra = 2.844 x 10’). 
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Fig. 10. Local dimensionless heat flux distribution along the 

heated surface at different Fo values (Ra = 2.844 x 10’). 



2580 Z.-X. GONG and A. S. MUJUMDAR 

6. CONCLUDING REMARKS 

Melting of a phase change material in a rectangular 8. 
cavity heated from below is simulated using a finite 
element model. Different flow patterns are obtained 
at different Rayleigh numbers. Complex and time- 9. 
dependent flow patterns are obtained at high Rayleigh 
numbers. The obtained flow patterns are qualitatively 
consistent with published results. 10. 
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